[참고] Policy Analysis Using DSGE Models

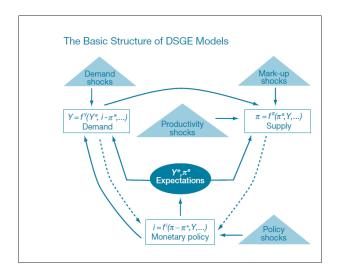
권이태, May 14, 2025

1 Introduction

- **동태확률일반균형모형**(Dynamic Stochastic General Equilibrium Model; DSGE Model)은 세계의 많은 중앙은행에서 **통화정책**(monetary policy)의 수립과 관련 커뮤니케이션에 사용되고 있다.
- DSGE는
 - 1. **미시적 토대**(microeconomic foundations) 위에 세워져 있고,
 - 2. 시장 참여자의 기간간 선택(intertemporal choice) 과정에 주목하며,
 - 3. 현재의 선택이 미래의 **확률적인**(stochastic) 상황에 대한 **기대**(expectation)에 의존하기 때문에 **동태적**(dynamic)이다.
 - 4. 또한 균형의 **일반균형**(general equilibrium)은 **정책**(policy)와 시장 참여자의 행태 사이 상호작용을 포착하며,
 - 5. **경기변동**(economic fluctuation)을 유발하는 **충격**(shock)의 **전파**(transmission) 경로를 추적하는 데에도 도움이 된다.
 - 6. 마지막으로, 경제의 구조와 가계/기업의 행태에 관한 주요 가정들을 공유하기 떄문에, 세부사항을 추가하는 등의 확장이 간편하다.
- 정책분석(policy analysis)을 위한 도구로써의 DSGE 모형은 학술적/정책적인 측면에 갇혀 있기 때문에, 일반 대중은 대개 그에 대한 이해를 갖추고 있지 못하다. 이 논문에서는 중규모(medium-scale) DSGE로써 DSGE의 기본 구조를 소개한다.

2 DSGE Models and Their Basic Structure

- 정책 분석을 위한 DSGE는 세 개의 밀접한 연관을 갖는 세 개의 블록으로 구성된다:
 - 1. 수요 블록(demand block)
 - 2. **공급** 블록(supply block)
 - 3. **통화정책 방정식**(monetary policy equation)



• 각 블록에 포함된 방정식과 통화정책 방정식은 미시적인 토대 위에서 결정된다. 즉 **가계**(households), **기업**(firms), **정부**(government)와 같은 시장 참여자들의 **행태**(behavior)와 **상호작용**(interaction)에 대한 명시적인 가정이 그 기초가 된다. 이로써 **시장 청산**(market clearing)이 매 기간 일어나면, 이로부터 일반균형이 세워진다.

(수요 블록) 수요 블록은 사전적인(ex ante) 실질이자율(real interest rate) $i-\pi^e$ 와 미래의 실물경기에 대한 기대 Y^e 의 함수

$$Y = f^Y(Y^e \uparrow, i - \pi^e \downarrow, \cdots)$$

로써 실물경기 Y를 결정한다. 만약 실질이자율이 높은 수준이라면 가계는 소비를, 기업은 투자를 줄여 Y를 낮춘다. 반면 미래의 실물경기에 대해 희망적인 기대가 있다면, 사람들은 더욱 많이 지출하려 하며 Y를 높인다.

(수요 블록) \rightarrow (공급 블록) 수요 블록에서의 방정식에 의해 Y가 결정되면, 이는 기대 인플레이션(expectation of future inflation) π^e 와 함께

$$\pi = f^{\pi}(\pi^e \uparrow, Y \uparrow, \cdots)$$

로써 인플레이션(inflation) π 를 결정한다. 만약 실물경기 Y가 호조라면 1) 기업은 노동자의 근로 시간을 늘리기 위하여 2) 임금(wage)를 상승시키려 할 것이고, 이는 3) 생산의 한계비용(marginal cost)을 높여 4) 가격(price)에 상승 압박으로 작용하고 인플레이션을 유발한다. 더불어 기대 인플레이션이 높은 수준이라면, 이는 더욱 현 시점의 인플레이션을 높인다.

(수요 블록) + (공급 블록) \to (통화정책 방정식) 이렇게 결정된 Y와 π 는 통화정책의 결정에 주요한 고려 요소가 된다. 중앙은행(central bank)는 명목이자율(nominal interest rate) i를

$$i = f^e(\pi - \pi^e \uparrow, Y \uparrow, \cdots)$$

와 같이 인플레이션과 실물경기의 함수로써 결정한다. 중앙은행은 단기적으로 실물경기가 과열되여 $\mathbf t$ 출(output) Y가 상승하면 $\mathbf t$ (short-term) 이자율을 높이려는 경향이 있는 반면, 경제적인 슬랙(slack) 이 있어 Y가 하락하면 단기 이자율을 낮추려 한다. 인플레이션 π 에 대해서도 마찬가지이다. 단기 명목이자율의 조정을 통해 실물경기와 인플레이션이 변화되면, 이는 다시 수요 블록과 공급 블록에 되돌아간다.

• 이를 종합하면, DSGE 모형은 산출 Y, 인플레이션 π, 명목이자율 i의 **내생적**(endogeneous) 상호작용에 의해 구축된다. 여기에 더하여, 이들에 대한 기대 역시도 모형에서 중요한 역할을 한다. **기대조정**(expectation management)는 실제로 정책이 경제에 영향을 미치는 주요 경로 중 하나이다.

(확률적 충격) DSGE 모형의 마지막 구성 요소는 각 블록에 가해지는 확률적 충격(stochastic shocks) 이다. 매 시기 발생하는 외생적(exogenous) 충격은 균형에 섭동을 일으켜 경제에 불확실성(uncertainty) 를 추가하고 경기변동을 일으킨다. 이러한 충격이 없다면 경제는 매우 예상 간으하게 움직일 것이며, 호황(boom)도, 불황(recession)도 없을 것이다.

- 1. 수요 충격(demand shock): 가계의 구매의사 등이 변화하면서 발생하는 수요 측의 충격
- 2. 생산성 충격(productivity shock): 기업의 생산성 변화 등에 의해 발생하는 공급 측의 충격
- 3. **마크업 충격**(mark-up shock): 상품의 판매가 변화 등에 의해 발생하는 공급 측의 충격
- 4. 정책 충격(policy shock): 통화정책의 수립 과정에서 발생하는 통화정책 측의 충격

3 Microfoundations of a Simple DSGE Model

3.1 The Model Economy

우리의 경제는 아래의 네 시장 참여자(agent)에 의해 구성된다:

- 1. 대표 가계(representative household)
- 2. 대표 최종재 생산 기업(representative final-good-producing firm), f-firm
- 3. 중간재 생산 기업의 연속체(continuum of intermediate firms), i-firms for $i \in [0,1]$
- 4. 통화정책의 권한주체(monetary autority)
- 대표 가계는 중간재 생산 기업인 *i*-firms에서 노동하여 얻은 임금으로써 *f*-firm이 생산하는 최종재를 소비한다.
- 각 중간재 생산 기업 *i*-firms는 중간재 *i*를 홀로 생산하는 **독점기업**(monopolist)으로, 가격을 결정할 수 있다.
- f-firm은 i-firms가 생산한 차별화된 중간재를 종합해 최종재를 생산하고, **경쟁시장**(competitive market)에서 판매한다.
- 통화정책의 권한주체는 명목이자율 *i*를 결정한다.

3.2 Households and the Aggregate Demand Block

모든 DSGE 모형의 수요 블록에서는 실질이자율과 지출 사이의 음의 상관관계를 모형화한다. 우리의 모형에서는 간단하게 **지출**(spending)의 유일한 요소가 **소비**(consumption)라고 가정한다. 따라서 실질이자율과 수요 사이의 음의 상관관계는 결국 가계의 소비 결정 변화로부터 비롯된다.

가계는 생애 전체의 **기대 할인 효용**(expected discounted lifetime utility)를 극대화하려는 동태적인 결정을 한다. 시점 t_0 에서 가계는 아래의 **최적화**(optimization) 문제를 푼다:

$$\begin{cases} \text{maximize}_{\{B_{t_0+s}, C_{t_0+s}, [H_{t_0+s}(i)]_{i \in [0,1]}\}_{s=0}^{\infty}} & \mathbb{E}\left[\sum_{s=0}^{\infty} \beta^s \left\{b_{t_0+s} \left(\log(C_{t_0+s} - \eta C_{t_0+s-1}) - \int_0^1 v(H_{t_0+s}(i))di\right)\right\} \middle| \mathcal{I}_{t_0}\right] \\ \text{subject to} & P_t C_t + \frac{B_t}{R_t} \leq B_{t-1} + \int_0^1 W_t(i)H_t(i)di \quad \text{for } t \geq t_0 \text{ and given } B_{t_0-1} \end{cases}$$

- 가계는 시점 t에서의 소비 C_t 를 선호한다. 다만 이전 기의 소비 C_{t-1} 에 비해 이 값이 매우 낮아 흐름이 끊기는 것은 선호하지 않는다. 이는 $\log(C_{t_0+s}-\eta C_{t_0+s-1})$ 를 통해 효용에 반영된다.
- 가계는 시점 t에서의 i-firm에서의 노동 $H_t(i)$ 를 기피하며, 이는 볼록함수 v에 의해 $i \in [0,1]$ 에서 합산되어 $-\int_0^1 v(H_{t_0+s}(i))di$ 를 통해 효용에 반영된다.
- 가계는 중간재 기업에서의 노동 $H_t(i)$ 을 통해 얻은 명목임금 $W_t(i)$ 으로써 소비할 여력을 얻는다. 따라서 가계의 예산제약은 이전 기의 예산 B_{t-1} 와 소득의 합

$$B_{t-1} + \int_0^1 W_t(i) H_t(i) di$$

이다.

• 가계는 최종재를 P_t 의 가격으로 C_t 만큼 소비해 P_tC_t 를 소비하는 동시에, 한 기가 만기이고 수익률(rate of return)이 R_t 인 국고할인채(discount government bond)를 구매해 다음 기로 소득을 이전한다. 따라서 가계는 아래와 같이 예산제약 하에서 소비와 저축을 수행한다.

$$P_tC_t + \frac{B_t}{R_t}$$

- 가계는 현재의 효용을 선호하며, 시점에 따라 변화하는 **기간간 한계대체율**(intertemporal marginal rate of substitution; IMRS) $\beta b_{t+1}/b_t$ 를 가진다. 여기에서 b_{t+1}/b_t 는 외생적으로 결정되는 확률과정으로, 가계의 **인내심**(impatience) 변화에 따라 발생하는 수요 충격을 반영한다. b_{t+1} 이 상승한다는 것은 가계가 미래를 조금 더 신경써 저축을 늘리고 현재의 소비를 줄이려는 경향성을 가지게 됨을 의미하기 때문이다.
- \mathcal{I}_{t_0} 는 시점 t_0 에서 가계가 가지고 있는 **정보 집합**(information set)를 의미하며, 가계가 계산하는 기대 효용은 해당 시점까지의 정보를 바탕으로 계산한 **조건부**(conditional) 기대 효용을

이제 그 해를 찾기 위해 라그랑주 승수법을 이용하자. 이 최적화 문제의 라그랑지안은

$$\mathcal{L} = \sum_{s=0}^{\infty} \beta^{s} \left(\mathbb{E} \left[\left\{ b_{t_{0}+s} \left(\log(C_{t_{0}+s} - \eta C_{t_{0}+s-1}) - \int_{0}^{1} v(H_{t_{0}+s}(i)) di \right) \right\} - \Lambda_{t_{0}+s} \left(P_{t_{0}+s} C_{t_{0}+s} + \frac{B_{t_{0}+s}}{R_{t_{0}+s}} - B_{t_{0}+s-1} - \int_{0}^{1} W_{t_{0}+s}(i) H_{t_{0}+s}(i) di \right) \middle| \mathcal{I}_{t_{0}} \right]$$

이며, 일계조건은

$$\begin{split} \frac{\partial \mathcal{L}}{\partial B_t} &= -\beta^{t-t_0} \frac{\Lambda_t}{R_t} - \beta^{t+1-t_0} \mathbb{E}[\Lambda_{t+1} | \mathcal{I}_t] = 0 \\ \frac{\partial \mathcal{L}}{\partial C_t} &= \beta^{t-t_0} \frac{b_t}{C_t - \eta C_{t-1}} + \beta^{t+1-t_0} \mathbb{E}\left[\left.\frac{\eta b_{t+1}}{C_{t+1} - \eta C_t}\right| \mathcal{I}_t\right] - \Lambda_t P_t = 0 \\ \frac{\partial \mathcal{L}}{\partial H_t(i)} &= \beta^{t-t_0} \times \frac{\partial}{\partial H_t(i)} \left(\int_0^1 \left(\Lambda_t W_t(i) H_t(i) - b_t v(H_t(i))\right) di\right) = 0 \end{split}$$

적절한 수학적 관용을 발휘하면, 아래처럼 방정식을 정리할 수 있다.

$$\Lambda_t = \beta \mathbb{E}[\Lambda_{t+1} | \mathcal{I}_t] R_t \tag{1}$$

$$\frac{\Lambda_t}{b_t} P_t = \frac{1}{C_t - \eta C_{t-1}} - \eta \mathbb{E} \left[\frac{\beta b_{t+1} / b_t}{C_{t+1} - \eta C_t} \middle| \mathcal{I}_t \right]$$
(2)

$$\frac{v'(H_t(i))}{\Lambda_t/b_t} = W_t(i) \tag{3}$$

- 이러한 가계의 선택은 **상태조건부 계획**(state-contingent plan)이다. 가계는 t_0 시점에서 미래의 계획을 전부 세우는 것이 아니라, 미래의 t시점에 특정한 상황을 마주했을 때 어떠한 방식으로 행동할지에 대한 준칙을 만들 뿐이다. 가계는 모든 확률적인 충격의 종류에 대해 알고 있으며, 각 상황에 맞게 기대를 형성해 소비와 근로 계획을 세운다.
- 이러한 식들로부터 이자율과 소비 사이의 음의 상관관계가 나타난다. 특히 $\eta=0$ 인 경우 앞의 두 식을

$$\frac{1}{C_t} = \frac{\Lambda_t}{b_t} P_t$$

$$= \frac{\beta \mathbb{E}[\Lambda_{t+1} | \mathcal{I}_t] R_t}{b_t} P_t$$

$$= \frac{\beta \mathbb{E}[b_{t+1} / P_{t+1} C_{t+1} | \mathcal{I}_t] R_t}{b_t} P_t$$

$$= \mathbb{E}\left[\frac{\beta b_{t+1}}{b_t} \frac{1}{C_{t+1}} \frac{R_t}{P_{t+1} / P_t} \middle| \mathcal{I}_t\right]$$
(4)

와 같이 정리해 기간간 소비의 대체를 설명하는 **오일러 방정식**(Euler equation)을 구성할 수 있다.

이로부터

- 1. 실질이자율 $\frac{R_t}{P_{t+1}/P_t}$ 가 상승하거나
- 2. 미래 소비 C_{t+1} 에 대한 기대가 감소하거나
- 3. 가계가 조금 더 인내심을 가져 b_{t+1} 이 상승하는 경우

현재 시점의 소비 C_t 는 감소하게 됨을 알 수 있다.

• 오일러 방정식에 로그-선형 근사를 취하고 적절한 수학적 관용을 발휘하면,

$$y_t = \mathbb{E}[y_{t+1}|\mathcal{I}_t] - (i_t - \mathbb{E}[\pi_{t+1}|\mathcal{I}_t]) - \delta_t$$
 (5)

와 같이 우리에게 익숙한 형태의 방정식을 얻는다. 이때 y_t 는 로그 output, $\pi_t = \log(P_t/P_{t-1})$ 은 인플 레이션율, $i_t = \log R_t$ 는 연속복리명목이자율(continuously compounded nominal interest rate)이다.

• 이러한 두 기간 간의 방정식을 차차 더해나가자. $\mathbb{E}[y_{\infty}|\mathcal{I}_t]=0$ 으로 아주 먼 미래에 경기 상황이 특별하지 않다고 하면.

$$y_{t} = \mathbb{E}[y_{t+1}|\mathcal{I}_{t}] - (i_{t} - \mathbb{E}[\pi_{t+1}|\mathcal{I}_{t}]) - \delta_{t}$$

$$+ \mathbb{E}[y_{t+1}|\mathcal{I}_{t}] = \mathbb{E}[(\mathbb{E}[y_{t+2}|\mathcal{I}_{t+1}] - (i_{t+1} - \mathbb{E}[\pi_{t+2}|\mathcal{I}_{t+1}]) - \delta_{t+1})|\mathcal{I}_{t}]$$

$$= \mathbb{E}[y_{t+2}|\mathcal{I}_{t}] - \mathbb{E}[(i_{t+1} - \pi_{t+2} - \delta_{t+1})|\mathcal{I}_{t}]$$

$$\vdots$$

$$y_{t} = -\mathbb{E}\left[\sum_{t=0}^{\infty} (i_{t+s} - \pi_{t+s+1} - \delta_{t+s})|\mathcal{I}_{t}\right]$$

으로 단기 명목이자율 i_{t+s} 들의 경로에 따라 현재의 y_t 가 결정됨을 알 수 있다. 이러한 경로를 통해 미래의 통화정책에 대한 기대는 현재의 실물경제에 직접적인 영향을 미칠 수 있게 된다. 특히 현재의 이자율만이 아니라, 미래의 이자율 역시 현재 경제를 결정하는 데 매우 큰 역할을 할 수 있다는 점이 놀랍다.

• 노동 $H_t(i)$ 에 대한 일계조건은 노동공급을 결정한다. v는 볼록함수이기에 v'은 증가함수이며, 노동자들은 높은 임금 $W_t(i)$ 를 제공하는 기업에서 더 많은 시간을 일하고 싶어함을 알 수 있다. 다만 너무높은 임금은 소득효과를 촉발시켜 부유한 가계가 소비로부터 얻는 한계효용을 감소시키고, 노동공급을줄이게 만든다. 기업이 재화를 생산하기 위해서는 가계의 노동이 꼭 필요하기에, 공급 블록에서 기업이 마주하는 최적화 문제는 가계의 노동과 관련되어 있다.

3.3 Firms and the Aggregate Supply Block

공급 블록에서는 실물경기와 인플레이션 사이의 양의 관계를 모형화한다. 중간재 기업 i는

$$Y_t(i) = A_t H_t(i) \tag{6}$$

와 같이 노동 $H_t(i)$ 에 대한 생산성 A_t 를 바탕으로 중간재 i를 $Y_t(i)$ 만큼 생성한다. A_t 는 외생적으로 결정되는 확률과정으로, 그 변화는 생산성 충격을 모형화한다. 이들은 독점 기업으로써 가격 $P_t(i)$ 역시 결정할 수 있고, 이에 반응하여 최종재 기업 f-firm은 중간재 i에 대한 수요를 결정한다. 수요는 수요탄력성 θ_t 과 최종재의 가격 P_t 에 대하여

$$Y_t(i) = Y_t \left(\frac{P_t(i)}{P_t}\right)^{-\theta_t} \tag{7}$$

처럼 쓸 수 있다.

여기에 더해 각 기업이 가격을 즉각적으로 조정하지 않는다고 하자. 즉 기업이 가격을 유연하게 조정하지 않으며, 긴 시간 동안 같은 가격으로 재화를 판매하여 어느 정도의 **경직성**(rigidity)가 있다고 보는 것이다. 시점 t에서 적절한 가격을 설정할 수 있는 기업들을 $\Omega_t \in [0,1]$ 이라고 하자. 이때 기업은 할인된 미래예상 이윤을 최대화하는 방향으로 생산량을 조절하며, s기 이후 가격을 유지할 확률이 α^s (즉 각 기마다 $1-\alpha$ 의 기업만이 가격을 새롭게 조정할 수 있고, 나머지는 이전 가격을 유지해야 한다면)라면 기업의 최적화 문제는

$$\text{maximize}_{P_t(i)} \mathbb{E}\left[\left. \sum_{s=0}^{\infty} \alpha^s \frac{\beta^s \Lambda_{t+s}}{\Lambda_t} \{P_i(i) Y_{t+s}(i) - W_{t+s}(i) H_{t+s}(i) \} \right| \mathcal{I}_t \right]$$

이며 추가적으로

$$Y_{t+s}(i) = Y_{t+s} \left(\frac{P_t(i)}{P_{t+s}}\right)^{-\theta_{t+s}}$$
 (8)

라는 중간재에 대한 수요곡선을 제약조건으로 가진다. 이때 기업의 수익에 대한 **확률적 할인인자**(stochastic discount factor; SDF)는

$$\frac{\beta^s \Lambda_{t+s}}{\Lambda_t}$$

이며, 기업의 최적화 문제에 대한 일계조건은

$$\mathbb{E}\left[\sum_{s=0}^{\infty} (\alpha \beta)^s \Lambda_{t+s} Y_{t+s} P_{t+s}^{\theta_{t+s}-1} \left[P_t^*(i) - \mu_{t+s} S_{t+s}(i)\right] \middle| \mathcal{I}_t \right] = 0$$
 (9)

으로 주어진다. 이때 $P_t^*(i)$ 는 Ω_t 에 포함되는 기업이 t 시점에 선택하는 최적 가격이며, $S_{t+s}(i) = W_{t+s}(i)/A_{t+s}$ 는 기업의 명목한계비용, $\mu_{t+s} = \frac{\theta_{t+s}-1}{\theta_{t+s}}$ 는 기업이 추가하고자 하는 **마크업**(mark-up) 비율로 만약 가격이 조정 가능하다면 기업은 원가에 이만큼을 더 붙여 가격을 책정한다. 마크업의 결정 공식은 Lerner's Formula라 불리기도 하며, 독점 기업들은 경직적인 수요를 마주하였을 때 더 높은 마크업, 그리고 그로써 더 높은 가격을 부여하려 함을 설명한다. 이 θ_t 가 외생적인 확률과정이라고 하면, 이는 마크업 충격을 묘사하며 기업의 **시장지배력**(market power) 변동에 대응한다.

한편 기업의 명목한계비용은 노동 측면에서 분석하면

$$S_{t+s}(i) = \frac{W_{t+s}(i)}{A_{t+s}}$$

$$= \frac{v'(H_{t+s}(i))}{\Lambda_{t+s}/b_{t+s}} \frac{1}{A_{t+s}}$$

$$= \frac{v'\left(\frac{Y_{t+s}}{A_{t+s}}\left(\frac{P_t(i)}{P_{t+s}}\right)^{-\theta_{t+s}}\right)}{A_{t+s}\Lambda_{t+s}/b_{t+s}}$$
(10)

를 얻는데, 이로부터 기업의 가격 결정 문제 (9)는 기업이 선택해야 할 $P_t(i)$ 를 제외하면 나머지는 시장의 **요약변수**(aggregate variable)인 Y_t, A_t, P_t, Λ_t 에 의존하기 때문에 모두 동일함을 알 수 있다. 따라서 그들의 최적 가격을 P_t^* 로 간편하게 쓸 수 있다. 이제 이러한 사실을 **가격수준**(price level)에 대한 식과 결합하면 가격수준에는

$$P_t = [(1 - \alpha)P_t^{*(1 - \theta_t)} + \alpha P_{t-1}^{(1 - \theta_t)}]^{\frac{1}{1 - \theta_t}}$$

와 같은 관계가 있으며, 이를 선형화하는 경우 **뉴케인지언 필립스 곡선**(New Kaynesian Phillips curve)

$$\pi_t = \xi s_t + \beta \mathbb{E}[\pi_{t+1} | \mathcal{I}_t] + u_t \tag{11}$$

를 얻는다. u_t 는 마크업 충격, $s_t = \log(S_t/P_t)$ 는 실질한계비용의 로그값이다. 특히 실질한계비용에 대한

인플레이션의 민감도는 ξ는

$$\xi = \frac{(1 - \alpha)(1 - \alpha\beta)}{\alpha(1 + \omega\theta)}$$

으로 가격 조정의 빈도 α 와 노동에 대한 **한계 비효용**(marginal disutility) ω , 평균 수요탄력성 θ 등에 의존 한다.

마지막으로 오일러 방정식과 유사한 방법으로 기간간 필립스 곡선을 종합하면

$$\pi_t = \mathbb{E}\left[\left.\sum_{s=0}^{\infty} \beta^s (\xi s_{t+s} + u_{t+s})\right| \mathcal{I}_t\right]$$

으로 현 시점에서의 인플레이션이 미래의 한계비용에 대한 경로에 의존하며, 결국에는 미래의 경기나 이자율 경로에 대한 기대에 의해서도 변화함을 알 수 있다. 즉 중앙은행이 펼칠 수 있는 통화정책 중 가장 효과가 좋은 것 중 하나는, 시장 참여자들과 소통하고 상태조건부 준칙으로써 신뢰를 얻어 그들의 기대를 직접 조정하는 것이다.

3.4 Monetary Policy

중앙은행(central bank)은 단기 명목이자율을 조정할 수 있는 권리를 가지고 있다. 만약 현재와 미래의 기대 이자율이 낮아지면, 사람들은 더 많은 재화를 구매하려 할 것이고, 수요가 많아지면 기업의 한계비용은 높아지며, 이에 따라 가격 수준이 상승하고 인플레이션이 촉발된다. 여기에서는 **테일러 준칙**(Taylor rule)과 유사한 아래의 결정식을 따라 명목이자율이 결정된다고 가정하자.

$$i_t = \rho i_{t-1} + (1 - \rho)[r_t^e + \pi_t^* + \phi_\pi(\pi_t^{4Q} - \pi_t^*) + \phi_y(y_t - y_t^e)] + \epsilon_t^i$$
(12)

이때 r_t^e, π_t^*, y_t^e 는 각각 실질이자율, 인플레이션율, 그리고 산출의 기저가 되는 값들이며, π_t^{4Q} 는 YoY 인플레이션율이다. 통화정책에서의 충격은 ϵ_t^i 로, 평균이 0인 확률변수로써 준칙에 의해 결정되는 이자율로부터 괴리가 있는 명목이자율이 결정될 때 발생한다. 이로써 우리는 인플레이션율이나 경기가 기준보다 호조를 띨때, 명목이자율 역시 올리는 방식으로 중앙은행의 의사결정이 이루어지며, 이에 따라 경기를 다시 일반적인 상태로 회복시키고 효율적인 수준에서 유지시키는 것이 중앙은행의 책무(mandate)임을 알 수 있다. 물가안 정목표제(inflation targeting)를 운영하는 중앙은행이 π_t^* 를 2% 등의 값으로 설정하는 것이 대표적이다. 다만 둘 중 하나의 값을 유지시키면서 나머지 하나의 값을 조정하기는 어렵기 때문에, 두 책무(dual mandate)를 모두 달성하기는 사실상 불가능하며 트레이드오프(trade-off)를 고려하여 적절한 통화정책을 펼쳐야 한다.

References

[1] A. M. Sbordone, A. Tambalotti, K. Rao, and K. J. Walsh, "Policy analysis using dsge models: an introduction," *Economic policy review*, vol. 16, no. 2, 2010.